
Redis in the
Yahoo! Cloud Serving Benchmark

A Swiss Army knife with a lot of screws and bolts

Robert Lehmann
robert.lehmann@student.hpi.uni-potsdam.de

Benchmark documentation

September 14, 2011

supervised by Johannes Lorey

mailto:robert.lehmann@student.hpi.uni-potsdam.de

contents

1 YCSB in a Nutshell 1
2 Introduction 2

2 .1 History 2

2 .2 Persistence 2

2 .3 Virtual Memory 3

2 .4 Replication 3

3 Related work 3
4 Connector 4

4 .1 Tables 4

4 .2 Scans 5

5 Setup 6
5 .1 Scalability 7

6 Results 7
6 .1 System under Load 9

7 Closing remarks 11

A B S T R A C T
Redis is a versatile key/value store which is hosted primarily in-memory.

We examine how it performs in the Yahoo! Cloud Serving Benchmark (YCSB)
when run on Amazon Web Services infrastructure. Benchmarks show that,
while it is a great in-memory database, its performance degrades dramatically
when writing to disk.

1 ycsb in a nutshell

Traditionally, there have been a number of benchmarks for relational databases
but these are at best ill-suited for the non-relational landscape as such. The
Yahoo! Cloud Serving Benchmark[1] tries to alleviate that problem by providing
a generic framework to induce load on a data store.

The assumptions on a database backend are then basically that it provides a
two-tier document mechanism and the CRUD type of operations, ie., creation,
retrieval, modification and deletion of individual documents with contained
items. These are called records and fields, respectively, in YCSB-speak. For the
built-in CoreWorkload, a sample record might be called user1234567890 and
contain the field field3 with 100 random bytes; the maximum number of
fields in a record is usually ten.

NB. There is a notion of a third tier: tables. The default table is called
usertable and is usually not changed.

1

2 introduction

Redis features sophisticated operations on its built-in datatypes, namely
strings, lists, sets, sorted sets, and hashes.

It trades in availability for consistency and partition tolerance but argues
that all operations are just fast enough because of its in-memory nature. [2]

For a more in-depth discussion of Redis’ general features check out Redis,
from the Ground Up. [3]

2 .1 History
Let me diverge shortly on Redis’ history to give you an understanding of how
it all came together.

Back in 2008 LLOOGG, an Internet startup offering services à la Google
Analytics in a real-time fashion, was powered by a traditional MySQL setup.
Salvatore “antirez” Sanfilippo, its CEO and author of hping1 and Jim2, was
unsatisfied with their high server load. He first deployed Redis in June 2009

and said it to be “working very well for the application domain it was conceived for.
[They] never experienced any stability problem [...].” [4]

After its 1.0 release the community continued to grow and the project
matured rapidly. Salvatore Sanfilippo and Pieter Noordhuis, a long-time con-
tributor, are being sponsored by VMware, Inc. since March 2010.

2 .2 Persistence
Redis is designed as an in-memory database and thus supposed to keep the
entire key space in memory during operation. When terminated (willfully or
inadvertently, fex. by a system crash) all data will be purged from memory.
Such volatility is not suitable for production setups. In order to achieve data
persistence and fault tolerance, Redis uses periodic snapshots and append-only
journaling (AOF).

Performance is usually favored over memory footprint: in-memory repre-
sentations of values are much larger than Redis dumps (*.rdb). They are
usually stored in a hybrid manner to speed up certain queries.

Internally, the key space is a huge hash table. When such a data structure
reaches its capacity limits it is said to degenerate and lose its constant-time
lookup performance. It consequently needs to be resized and rehashed — that
means the number of buckets is adjusted and all items are reorganized into
their new buckets. Incremental rehashing helps Redis to keep the performance

1a command-line oriented TCP/IP packet assembler/analyzer, see hping.org
2a small-footprint implementation of the Tcl programming language, see jim.berlios.de

2

penalties of such an operation low by temporarily provisioning two hash
tables and slowly migrating the keys during normal operation. [5]

2 .3 Virtual Memory
Excess data is handled by a handcrafted virtual memory implementation since
the 2.0 release; the rationale for which can be aptly summarized as “Salvatore
is much brighter than all of Microsoft Research.” On a more serious note, they
rolled their own swapping mechanisms because Redis strongly fragments its
memory space. Pages provided by the operating system do not match Redis
objects particularly well and caches will usually end up cold. [6]

The VM implementation imposes certain restrictions upon data sets which
do not make it suitable for all use case scenarios: the global hash table needs
to stay in-memory at all times and cannot be swapped out. If an object is
designated to be swapped its value needs to be written out in its entirety.
Imagine you have a large object, for example a sorted set, with a non-uniform
access distribution on its elements. Such an object would never be swapped
out, even though the rarely accessed parts of it probably could.

While the Redis documentation is all abuzz virtual memory and its various
tweaking options3, Redis core developer Pieter Noordhuis recently expressed
his concerns and the future directions for on-disk storage in Redis4:

the vm has not been working out as well as expected [...] so instead of
continuing to support an ill working feature, it is dropped [...] for the
better of the overall project [...] we may investigate going to disk at a later
point in time, but this will have larger overall impacts [...] so for now,
RAM-only

2 .4 Replication
Redis supports horizontal scaling through master-slave replication. Redis 3.0
promises to bring a whole new suite of replication features to the table with
its redis-trib tool. [7]

3 related work

Redis comes with a benchmark utility itself: redis-benchmark. It is used
for continuous feedback how a particular feature fares in terms of query
performance.

3For the 2.4 release, the VM implementation has officially been deprecated.
4http://redis.hackyhack.net/2011-07-26.html#598/h598,600,601,603,604

3

J. Ramirez has compiled a catalog of useful configuation tweaks for deploy-
ment on the Amazon Elastic Compute Cloud. [8]

4 connector

A naïve mapping of YCSB documents to Redis would generate some unique
string from a record/field pair, so that, eg., user1234567890’s field3 would
end up in the Redis key user1234567890:field3 as a normal string object.

Upon closer investigation, it turns out Redis has a much better fit for YCSB
documents in store (no pun intended): hash tables. All records can be mapped
to an individual hash and run just fine. For example, the previously mentioned
query is satisfied by:

HSET user1234567890 f i e l d 3 " value "
=> OK
HGET user1234567890 f i e l d 3

=> " value "

This actually plays down the full strength of the benchmark’s default work-
loads, where a single read operation usually tries to fetch a set of fields. For-
tunately, Redis directly offers a command to retrieve multiple fields of a hash,
called HMGET. For a full-record read we can utilize the HGETALL command.

Insert and update operations can be implemented in a similar fashion, using
HMSET.

Records are deleted with an unqualified DEL call which does not care about
the internal object type of the key.

4 .1 Tables
Every YCSB call supplies a table name arranging where the supplied doc-
ument is to be inserted. Redis, though, does not support named tables; it
only has a fixed number of databases. The connector should map between
names and indices— and could do so lazily and on-demand —and switch to
the determined database using the SELECT command. For the CoreWorkload,
supporting only one table in the default database is fine and our connector
does not need to incur any such overhead.

The exact amount of databases available to a Redis instance can be config-
ured through the databases directive before launch. Redis’ memory footprint
is not affected by the number of databases.

4

4 .2 Scans
Scan operations over a key space pose another challenge in implementing
the YCSB API. The built-in Voldemort connector goes out of its way and just
raises a warning (and happens to distort the benchmark in its favor):

Voldemort does not support Scan semantics

Redis, though, is not only a key/value store — it also supports a couple
of intricate data structures. Among lists, sets and the previously mentioned
hashes we are especially interested in sorted sets. A sorted set is a a collection
of items where each member has an associated score determining its position
in the set.

Ordering and value uniqueness make sorted sets a perfect fit for indices.
Under the hood, sorted sets are stored like normal sets: as a hash table. Hash
tables provide us with membership tests in O(1) amortized time but render
range scans O(n).

For efficiency reasons, sorted sets are also stored as skip lists in memory.
Skip lists are much like linked lists but offer to skip a number of elements
when performing a search by storing far-reaching pointers. Conceptually, this
is not far from spanning a balanced tree over the list. It yields performance
characteristics close to amortized O(log n) for range scans which is much
more favorable to a full-table scan.

We build an index in the following way. Whenever a new key arrives (ie.,
for any insert operation):

1. Pick an index key. We statically choose _indices for now; in any real
world scenario we would determine that based on our record type.

2. Calculate a hash for that particular, newly-inserted key. This could prob-
ably be some unique ID or the byte value of the first three letters; our
primitive implementation uses Java’s hashCode method. Designing a
clever hashing algorithm is the crux here: for our CoreWorkload it would
be clever to pick the user ID (remember, records are always named à la
user1234567890) but that approach would not scale to other workloads.
The exact implementation is not too important anyways as we just care
about any scan semantics at all — it matches the desired performance
characteristics asymptotically.

3. Insert key into sorted set through ZADD. While updating the hash table
can be done in amortized constant time, seeking the right position in
the skip list requires logarithmic effort.

5

Removing keys is analogous.
Subsequent scan operations are trivial. Scans always supply a starting key

and a number of following records they want to read. We calculate the starting
key’s hash as before and issue a ZRANGEBYSCORE. That particular command
requires a start and end score to narrow down the selection and optionally
allows an SQL-esque LIMIT keyword to page through the results. We supply
an open-ended, inclusive range beginning at the determined hash and fetch
the first recordcount-sized page.

Indexing can be quite a performance hit as it degrades inserts from O(1) to
O(log n). Index maintenance carries no weight for most benchmarks, though,
as insert operations are only part of the load phase which is excluded from
the measurements. For this part we observed a 50 % performance overhead to
each insert operation though.

5 setup

YCSB comes with six predefined workloads, all resembling another more or
less realistic real world scenario. We executed them in the following order:

1. Load with workload A
2. Run workload A
3. Run workload B
4. Run workload C
5. Run workload F
6. Run workload D
7. Run workload E

32-bit builds of Redis only support up to 4 GB of memory (as per operating
system restrictions), requiring virtual memory for the other portion of the
dataset. 64-bit builds do not expose such restrictions but suffer from doubled
pointer size. Interestingly, dumps and journals are cross-compatible.

In isolated, up-front tests, VM degraded performance by about 50 %; AOF
journaling caused another 20 % blow. Tuning hash-max-zipmap-value to
100— the size of a YCSB field —resulted in 50 % memory savings5.

Background saving may cause intermittent client failure. This is unattractive
for the load phase (considering that the YCSB client does not cope with

5For a couple of documents, the database consumed 1.62 MB instead of 2.54 MB (including
the 534.61 KB initial data set size).

6

retransmission too well). For high-load bulk operations, one should always
disable snapshotting6.

5 .1 Scalability
Redis only supports master-slave replication. All changes made to a master
node are propagated to all connected slaves7 but not the other way around.

The YCSB benchmark is ill-suited for such a scenario as it would render all
documents inconsistent unless you only, exclusively talk to the master. Redis
proposes slaves to be used for read-only queries such as SORT, or redundancy
(since a slave can pitch in for a corrupting master at any time).

6 results

To fully leverage Redis’ in-memory capabilities we first run the YCSB bench-
mark on a High-Memory Double Extra Large instance8.

Machine High-Memory Double Extra Large (m2.2xlarge)
Memory 34.2 GB
Processor 4 cores, 64-bit
Operating System Ubuntu Natty Narwhal
Availability Zone US-East 1b
Redis 2.0.1
Items 2,000,000

Operations 100,000

During the load phase we achieve a pretty stable 430 ops/sec in a single-
threaded deployment. Multi-threaded setups9 quickly reached a tipping point
of over 9000 operations per second at about 16 threads. 28 threads seemed
like the sweet spot between client and server scaling.

Memory utilization scaled linearly with the stored data set size.
Scans (workload E, which has been trimmed to 10,000 operations) exhibit

quite peculiar performance characteristics: 300 ops/sec tops, with a constant

6Periodic snapshotting is activated by default. Removing all save directives from the config-
uration circumvents snapshotting completely.

7The mechanism is incredibly simple: after transferring a dump file of the current master
state, which is usually created for persistence anyways, a slave is just being proxied all
issued commands. See redis.io/topics/replication for details.

8See aws.amazon.com/ec2/instance-types/ for all available types.
9The number of threads is configued by the -threads parameter to the YCSB client.

7

Figure 1: throughput in ops/sec relative to # of threads

latency of about 100 milliseconds. Associated inserts could not break that
throughput limit, too, but only experienced about 5 milliseconds of latency.

The latency plots (Fig. 1) show how the server was vastly underutilized. In
an overload scenario, the latency would scale worse than linearly.

The client machine was under a constant load factor of 6 (meaning 600 %
processor demand) when occupied by 40 threads. A rehearsal of the measured
throughput cap identified the client machine as the culprit — two clients
reached similar throughputs, individually, when run concurrently.

workload A C
concurrent 8 4 8 4

throughput (ops/sec) 16,000 12,200 13,800 9,800

latency (msec) 1.6 2.2 1.9 2.8

8

Figure 2: latency (ms) vs. throughput (ops/sec)

6 .1 System under Load
Another interesting setup is the Extra Large instance type.
Machine Extra Large (m1.xlarge)
Memory 15 GB

As these machines are not equipped with enough memory to keep the
whole data set in-memory we need to enable swapping:

vm−enabled yes
vm−max−memory 8g
vm−page−s i z e 1000

vm−thread 5

Redis occupies about 50 % of additional RAM10 with hybrid data structures
(ie. redundant data) to speed up certain queries. If Redis is allotted 10 GB
of memory it will easily burst the memory boundary with auxiliary data
structures and invoke the OOM killer.

10For our 20 GB data set we ended up with a resource usage of about 29 GB. The 8 GB setting
left less than 100 MB free on the smaller machine, with no other system services consuming
a considerable amount of memory.

9

Hashes — or all Redis objects for that matter — can only be swapped in
their entirety. Now with the default page size of 32 bytes that would result in
cache thrashing of sorts and require multiple, semantically unrelated pages
to be swapped in for a single record field. A virtual memory page should
accomodate an entire YCSB document.

The thread count allows the scheduler to saturate all cores by always hav-
ing an enqueued job. The swap file was allocated on the instance store for
performance reasons.

Latencies are several orders of magnitude worse compared with their in-

memory counterparts and hit a real barrier this time around.

Figure 3: latency (ms) vs. throughput (ops/sec)

Scans (workload E) were as abysmal as expected: swapping the index did
take way too long. Tests usually timed out abruptly after a couple of opera-
tions (literally).

Workload D performed extraordinarily well in contrast to the other op-
erations (which quickly degraded at about 150 ops/sec) and reached up to
400 ops/sec where it simply stopped scaling in terms of throughput, not la-
tency. Caching might have been a big factor in this benchmark, as records are

10

accessed repeatedly. It is the only benchmark which uses the latest request
distribution strategy.

Figure 4: latency (ms) vs. throughput (ops/sec) without workload D

7 closing remarks

Redis is an incredibly lean and fun tool to use. They have a momentum that
other databases can only dream of — if there is a valid strategy to solve
any given problem, Redis has probably gone down that route and tackled it
full-front.

It is a great in-memory database but has no clue how to properly han-
dle a disk device. Even solid-state drives only provide limited performance
improvements. [9] Enough memory is crucial in its operations.

The INFO command and the shipped redis-cli tool are incredibly helpful
in quickly validating hypotheses about Redis’ status.

11

Figure 5: latency (ms) vs. throughput (ops/sec) with variations

And a warning for the kids — don’t try this at home: stopping a 20 GB
instance of Redis is a time-consuming task and might well lock up your
machine.

references

[1] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proceedings
of the 1st ACM symposium on Cloud computing, ser. SoCC ’10.
New York, NY, USA: ACM, 2010, pp. 143–154. [Online]. Available:
http://doi.acm.org/10.1145/1807128.1807152

[2] N. Hurst. (2010, March) Visual guide to NoSQL systems. [Online].
Available: http://blog.nahurst.com/visual-guide-to-nosql-systems

[3] M. J. Russo. (2010, October) Redis, from the ground up. [Online]. Available:
http://blog.mjrusso.com/2010/10/17/redis-from-the-ground-up.html

12

http://doi.acm.org/10.1145/1807128.1807152
http://blog.nahurst.com/visual-guide-to-nosql-systems
http://blog.mjrusso.com/2010/10/17/redis-from-the-ground-up.html

[4] S. Sanfilippo. (2009, June) How Redis is behaving in production
with lloogg.com. [Online]. Available: http://groups.google.com/group/
redis-db/msg/17c21c48642e4936

[5] ——. (2010, April) Redis weekly update #4: Non blocking rehashing.
[Online]. Available: http://antirez.com/m/p.php?i=209

[6] ——. (2010, February) Redis virtual memory: the story and the code.
[Online]. Available: http://antirez.com/post/redis-virtual-memory-story.
html

[7] ——. (2011, January) Redis cluster. [Online]. Available: http://redis.io/
presentation/Redis_Cluster.pdf

[8] J. Ramirez. (2011, January) Prime time redis 101: Set
up. [Online]. Available: http://jramirez.tumblr.com/post/2589232577/
prime-time-redis-101-set-up

[9] S. Sanfilippo et al. (2010, October) Redis and SSD. [Online].
Available: http://groups.google.com/group/redis-db/browse_thread/
thread/5b6d7d913fff9c8f

13

http://groups.google.com/group/redis-db/msg/17c21c48642e4936
http://groups.google.com/group/redis-db/msg/17c21c48642e4936
http://antirez.com/m/p.php?i=209
http://antirez.com/post/redis-virtual-memory-story.html
http://antirez.com/post/redis-virtual-memory-story.html
http://redis.io/presentation/Redis_Cluster.pdf
http://redis.io/presentation/Redis_Cluster.pdf
http://jramirez.tumblr.com/post/2589232577/prime-time-redis-101-set-up
http://jramirez.tumblr.com/post/2589232577/prime-time-redis-101-set-up
http://groups.google.com/group/redis-db/browse_thread/thread/5b6d7d913fff9c8f
http://groups.google.com/group/redis-db/browse_thread/thread/5b6d7d913fff9c8f

	1 YCSB in a Nutshell
	2 Introduction
	2.1 History
	2.2 Persistence
	2.3 Virtual Memory
	2.4 Replication

	3 Related work
	4 Connector
	4.1 Tables
	4.2 Scans

	5 Setup
	5.1 Scalability

	6 Results
	6.1 System under Load

	7 Closing remarks

